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ABSTRACT

Let G be a finite group and |Cent(G)| be the number of distinct cen-
tralizers of its elements. G is called n-centralizer if |Cent(G)| = n.
In this paper, we classify all finite non-abelian simple groups G with
|Cent(G)| ≤ 100.
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1. Introduction

Let G be a finite group. We denote by Cent(G) := {CG(g)|g ∈ G}, where
CG(g) is the centralizer of the element g in G. Let n > 0 be an integer. A
group G is called n-centralizer if |Cent(G)| = n.

It is clear that a group is 1-centralizer if and only if it is abelian. Belcastro
and Sherman proved the following results in Belcastro and Sherman (1994):

(i) There is no 2-centralizer and no 3-centralizer group.

(ii) A finite group G is 4-centralizer if and only if G
Z(G)

∼= Z2 × Z2.

(iii) A finite group G is 5-centralizer if and only if G
Z(G)

∼= Z3 × Z3 or S3.

Subsequently, all finite n-centralizer groups for n ≤ 9 have been character-
ized in Abdollahi et al. (2007), Ashrafi (2000b), Ashrafi (2000a) and Foruzan-
far and Mostaghim (2015). In Ashrafi and Taeri (2005), the structure of finite
groups G with |Cent(G)| ≤ 21 has been investigated and also using the classi-
fication of finite simple groups, the authors proved that if G is a finite simple
group and |Cent(G)| = 22, then G ∼= A5. In Zarrin (2009), all finite semi-
simple groups G with |Cent(G)| ≤ 73 have been classified.

In this paper, we classify all finite non-abelian simple groupsG with |Cent(G)| ≤
100 and prove the following theorem:

Theorem 1.1. If G is a finite non-abelian simple group with |Cent(G)| ≤ 100,
then it is isomorphic to one of the following groups:
PSL2(5), PSL2(7) or PSL2(8).

2. Preliminary results

Let G be a finite group and p a prime divisor of the order of G. We denote by
υp(G), the number of Sylow p-subgroups of G which pairwise intersect trivially.
Also q denotes the order of a finite field and so is a prime power.

We first describe the classification theorem of finite simple groups and then
present some lemmas that will be used in the proof of Theorem 1.1.

Theorem 2.1 (Wilson (2009), p. 3). Every finite simple group is isomorphic
to one of the following:
(i) a cyclic group Zp of prime order p;
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(ii) an alternating group An for n ≥ 5;
(iii) a classical group:

linear: PSLn(q) for n ≥ 2, except PSL2(2) and PSL2(3);

unitary: PSUn(q) for n ≥ 3, except PSU3(2);

symplectic: PSp2n(q) for n ≥ 2, except PSp4(2);

orthogonal: PΩ2n+1(q) for n ≥ 3 and q odd;

PΩ+
2n(q) for n ≥ 4;

PΩ−
2n(q) for n ≥ 4;

(iv) an exceptional group of Lie type:

G2(q) for q ≥ 3, F4(q), E6(q), 2E6(q), 3D4(q), E7(q), E8(q);

or

2B2(22m+1) ∼= Sz(22m+1) for m ≥ 1 (the Suzuki group);

2F4(22m+1), 2G2(32m+1) for m ≥ 1 (the Ree groups);

or the Tits group 2F4(2)
′
.

(v) one of 26 sporadic simple groups:

the five Mathieu groups M11, M12, M22, M23, M24;

the seven Leech lattice groups Co1, Co2, Co3, McL, HS, Suz, J2;

the three Fischer groups Fi22, Fi23, Fi
′

24;

the five Monstrous groups M , B, Th, HN , He;

the six pariahs J1, J3, J4, O,N , Ly, Ru.

Conversely, every group in this list is simple, and the only repetitions in
this list are:
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PSL2(4) ∼= PSL2(5) ∼= A5;

PSL2(7) ∼= PSL3(2);

PSL2(9) ∼= A6;

PSL4(2) ∼= A8;

PSU4(2) ∼= PSp4(3).

Lemma 2.1 (Ashrafi and Taeri (2005), Lemma 4). Let G be a finite group,
and p a prime divisor of the order of G. Then |Cent(G)| ≥ υp(G) + 1.

Lemma 2.2 (Ashrafi and Taeri (2005), Lemma 5). Let G be a finite group,
and p a prime divisor of the order of G. If p2 - |G|, and G have more than one
Sylow p-subgroup, then |Cent(G)| > 2+kp, where k is the least positive integer
such that 1 + kp divides |G|.

Lemma 2.3 (Ashrafi and Taeri (2005), Lemma 6). Let K be a subgroup of a
finite group G. Then |Cent(K)| 6 |Cent(G)|.

Theorem 2.2 (Zarrin (2009), Theorem 1.1). Let G = PSL2(q), where q is a
p-power (p prime). Then

1. If q ∈ {2, 3, 5} or q ≡ 0 mod 4, then

|Cent(G)| =


q2 + q + 2 if q > 5,
22 if q = 4 or 5,
6 if q = 3,
5 if q = 2.

 .

2. If q > 5 and q ≡ 1 mod 4, then

|Cent(G)| = 3q2 + 3q + 4

2
.

3. If q > 5 and q ≡ 3 mod 4, then

|Cent(G)| = 3q2 + q + 4

2
.

Theorem 2.3 (Zarrin (2009), Theorem 1.2). Let G = Sz(q) (q = 22m+1,m >
0). Then

|Cent(G)| = q3 − q2 + q +
q2(q2 + 1)

2
+
q2(q2 + 1)(q − 1)

4(q + 2r + 1)
+
q2(q2 + 1)(q − 1)

4(q − 2r + 1)
,

where r =
√

q
2 .
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3. The proof of Theorem 1.1

To prove our main result, Theorem 1.1, we first show the following lemmas.

Lemma 3.1. If G = PSL(n, q), where (n, q) 6= (2, 2), (2, 3), then |Cent(G)|
> 100, unless in the cases: PSL2(5), PSL2(7) or PSL2(8).

Proof. Let q = pm, where p is prime andm ≥ 1. Suppose that |Cent(PSLn(q))| ≤
100. If n = 2, then by [Huppert (1967), Theorem 8.2, p. 191] we have

100 ≥ |Cent(PSL2(pm))| ≥ υp(PSL2(pm)) + 1 = pm + 2.

Thus we have the following cases: pm = 4, 8, 16, 32, 64, 9, 27, 81, 5, 25, 7, 49, 11,
13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

So by Theorem 2.2 only the following three groups will be remained:

PSL2(4) ∼= PSL2(5) ∼= A5, PSL2(7) and PSL2(8)

and we have

|Cent(PSL2(5))| = 22, |Cent(PSL2(7))| = 79 and |Cent(PSL2(8))|
= 74.

Now suppose that n ≥ 3. By checking the order of PSLn(pm) it follows
that there is a prime p such that p divides |PSLn(pm)| and p2 does not divide
|PSLn(pm)| and p > 100. So by Lemma 2.2, |Cent(PSLn(pm))| > 100 unless
in the following cases:

n = 3 and pm = 2, 4, 8, 16, 64, 3, 9, 81, 5, 25, 7, 49, 11, 121, 13, 23, 529, 29, 37
or
n = 4 and pm = 2, 4, 8, 3, 9, 5, 7, 11, 13, 23 or
n = 5 and pm = 2, 4, 3, 9, 5 or
n = 6 and pm = 2, 4, 3, 9, 5.

By an easy program which is written in The GAP Group (2013) we find
the following data:
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G υp(G) G υp(G)
PSL3(4) υ7 = 26 . 3 . 5 PSL3(49) υ19 = 29 . 3 . 52 . 76

PSL3(8) υ73 = 29 . 3 . 72 PSL3(11) υ19 = 24 . 52 . 113

PSL3(16) υ7 = 212 . 3 . 52 . 17 PSL3(121) υ19 = 27 . 3 . 52 . 116 . 61
PSL3(64) υ5 = 217 . 33 . 7 . 19 . 73 PSL3(13) υ7 = 2 . 32 . 133 . 61
PSL3(3) υ13 = 24 . 32 PSL3(23) υ3 = 7 . 11 . 233 . 79
PSL3(9) υ13 = 27 . 35 . 5 PSL3(529) υ5 = 23 . 32 . 7 . 11 . 132 . 236 . 79
PSL3(81) υ7 = 29 . 311 . 52 . 41 PSL3(29) υ3 = 2 . 7 . 13 . 293 . 67
PSL3(5) υ31 = 25 . 53 PSL3(37) υ7 = 25 . 33 . 19 . 373

PSL3(25) υ31 = 27 . 3 . 56 . 13 PSL4(2) υ5 = 24 . 3 . 7
PSL3(7) υ19 = 25 . 3 . 73 PSL4(4) υ17 = 210 . 34 . 5 . 7

G υp(G) G υp(G)
PSL4(8) υ13 = 216 . 32 . 73 . 73 PSL5(4) υ7 = 218 . 3 . 5 . 11 . 17 . 31
PSL4(3) υ13 = 27 . 35 . 5 PSL5(3) υ13 = 25 . 38 . 5 . 112

PSL4(9) υ7 = 29 . 311 . 52 . 41 PSL5(9) υ7 = 28 . 317 . 5 . 112 . 41 . 61
PSL4(5) υ13 = 25 . 3 . 56 . 31 PSL5(5) υ11 = 211 . 32 . 59 . 13 . 31
PSL4(7) υ19 = 29 . 3 . 52 . 76 PSL6(2) υ5 = 212 . 32 . 72 . 31
PSL4(11) υ7 = 27 . 3 . 52 . 116 . 61 PSL6(4) υ11 = 230 . 36 . 52 . 72 . 13 . 17
PSL4(13) υ5 = 25 . 34 . 7 . 136 . 61 PSL6(3) υ5 = 23 . 314 . 7 . 112 . 132

PSL4(23) υ5 = 24 . 3 . 7 . 113 . 236 . 79 PSL6(9) υ41 = 28 . 328 . 72 . 112 . 132 . 61 . 73
PSL5(2) υ5 = 28 . 3 . 7 . 31 PSL6(5) υ7 = 212 . 3 . 515 . 11 . 13 . 31 . 71

By Lemma 2.1 in each case we obtain a contradiction, unless in the case
G ∼= PSL3(2) ∼= PSL2(7) and in this case we have |Cent(G)| = 79.

Lemma 3.2. If L is a classical group or an exceptional group of Lie type, then
|Cent(L)| > 100, unless in the cases: L ∼= PSL2(5), PSL2(7) or PSL2(8).

Proof. If L ∼= An(q) ∼= PSLn+1(q), then by Lemma 3.1, the only groups sat-
isfying the property |Cent(L)| ≤ 100 are the groups: PSL2(5), PSL2(7) or
PSL2(8).

If L ∼= Bn(q) ∼= PΩ2n+1(q), n > 1, then by checking the order of L, it
follows that there is a prime p such that p divides |L| and p2 does not divide
|L| and p > 100.

So by Lemma 2.2, |Cent(L)| > 100, unless in the following cases:

n = 2 and q = 2, 4, 8, 32, 3, 9, 27, 5, 7, 11, 13, 17, 23, 31, 41, 43, 47 or
n = 3 and q = 2, 4, 8, 3, 9, 5, 7, 11, or
n = 4 and q = 2, 3, or
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n = 5 and q = 2, 3, or
n = 6 and q = 2, 3.

Since A7 ≤ PΩ5(q) in King (2005) and |Cent(A7)| = 807, by Lemma 2.3 we
can consider the following cases:

G υp(G) G υp(G)
PΩ7(2) υ5 = 26 . 33 . 7 PΩ7(11) υ7 = 28 . 33 . 52 . 119 . 37 . 61
PΩ7(4) υ7 = 217 . 3 . 53 . 13 . 17 PΩ9(2) υ7 = 214 . 33 . 52 . 17
PΩ7(8) υ5 = 222 . 35 . 72 . 19 . 73 PΩ9(3) υ7 = 29 . 314 . 52 . 13 . 41
PΩ7(3) υ5 = 24 . 38 . 7 . 13 PΩ11(2) υ7 = 220 . 33 . 5 . 11 . 17 . 31
PΩ7(9) υ7 = 29 . 317 . 53 . 41 . 73 PΩ11(3) υ7 = 28 . 320 . 5 . 112 . 13 . 41 . 61
PΩ7(5) υ7 = 28 . 3 . 59 . 13 . 31 PΩ13(2) υ11 = 234 . 36 . 52 . 72 . 13 . 17 . 31
PΩ7(7) υ19 = 211 . 3 . 52 . 79 . 43 PΩ13(3) υ41 = 211 . 332 . 52 . 72 . 112 . 132 . 61 . 73

Therefore by Lemma 2.1, in each case we obtain a contradiction. If L ∼=
Cn(q) ∼= PSp2n(q), n > 2, then, as before, by checking the order of L, it follows
that we must consider the following cases:

n = 3 and q = 2, 4, 8, 3, 9, 5, 7, 11, or
n = 4 and q = 2, 3, or
n = 5 and q = 2, 3, or
n = 6 and q = 2, 3.

Since L ∼= Cn(q) ∼= PSp2n(q), we have the following table:

G υp(G) G υp(G)
PSp6(2) υ5 = 26 . 33 . 7 PSp6(11) υ7 = 28 . 33 . 52 . 119 . 37 . 61
PSp6(4) υ7 = 217 . 3 . 53 . 13 . 17 PSp8(2) υ7 = 214 . 33 . 52 . 17
PSp6(8) υ5 = 222 . 35 . 72 . 19 . 73 PSp8(3) υ7 = 29 . 314 . 52 . 13 . 41
PSp6(3) υ5 = 24 . 38 . 7 . 13 PSp10(2) υ7 = 220 . 33 . 5 . 11 . 17 . 31
PSp6(9) υ7 = 29 . 317 . 53 . 41 . 73 PSp10(3) υ7 = 28 . 320 . 5 . 112 . 13 . 41 . 61
PSp6(5) υ7 = 28 . 3 . 59 . 13 . 31 PSp12(2) υ11 = 234 . 36 . 52 . 72 . 13 . 17 . 31
PSp6(7) υ19 = 211 . 3 . 52 . 79 . 43 PSp12(3) υ41 = 211 . 332 . 52 . 72 . 112 . 132 . 61 . 73

So by Lemma 2.1, in each case we obtain a contradiction.

Let L ∼= Dn(q) ∼= PΩ+
2n(q), n > 3. As before, by checking the order of L, it fol-

lows that we must consider the following cases: D4(2), D4(4), D4(8), D4(3), D4(9),
D4(5), D4(7), D4(11), D5(2), D5(3), D6(2) andD6(3). Using the fact thatDn(q) ∼=
PΩ+

2n(q) and the property PSL2(qt) ≤ PΩ+
2t(q) in Cossidente (2004), only the

following cases remain:
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G υp(G) G υp(G)

PΩ+
8 (2) υ7 = 211 . 34 . 52 PΩ+

12(2) υ11 = 229 . 36 . 5 . 72 . 17 . 31
PΩ+

10(2) υ7 = 217 . 32 . 52 . 17 . 31 PΩ+
12(3) υ41 = 213 . 328 . 5 . 72 . 112 . 132 . 61

PΩ+
10(3) υ7 = 29 . 317 . 5 . 112 . 13 . 41

Therefore by Lemma 2.1, in each case we obtain a contradiction.

If L ∼= G2(q), we obtain a prime p such that p divides |L|, and p2 does not
divide |L|, and p > 100. So by Lemma 2.2, |Cent(L)| > 100, unless in the
following cases: G2(2), G2(4), G2(8), G2(3), G2(9), G2(5), G2(7) and G2(11).

By Yokota (2009), we have SU3(q) ≤ G2(q). Therefore by Lemmas 2.1 and 2.3
and the following table we obtain a contradiction.

G υp(G)
G2(2) υ7 = 25 . 32

SU3(3) υ7 = 25 . 32

SU3(4) υ3 = 25 . 5 . 13
SU3(5) υ7 = 24 . 3 . 53

SU3(7) υ3 = 22 . 73 . 43
SU3(8) υ7 = 28 . 33 . 19
SU3(9) υ73 = 25 . 35 . 52

SU3(11) υ5 = 2 . 32 . 113 . 37

If L ∼= F4(q), then we must consider F4(2) or F4(3). By Yokota (2009), we
have G2(q) < F4(q), so we obtain a contradiction.

Let L ∼= E6(q), E7(q) or E8(q). As before, by checking the order of L, it follows
that we must consider the following case: E6(2). By Conway et al. (1985), we
have F4(2) < E6(2) and therefore we obtain a contradiction.

If L ∼= 2B2(q) ∼= Sz(q), where q = 22m+1, m ≥ 1, then we must consider 2B2(8)
or 2B2(32). Now by Theorem 2.3 we obtain a contradiction.

Let L ∼= 2E6(q) or 2F4(q), where q = 22m+1, 3D4(q). we obtain a prime p such
that p divides |L|, and p2 does not divide |L|, and p > 100. So by Lemma 2.2,
|Cent(L)| > 100, unless in the following cases: 2F4(2), 2E6(2), 2E6(3), 3D4(2)
or 3D4(3). By Conway et al. (1985), Wilson (2009) and Lubeck and Malle
(1999), we have PSL3(3) : 2 < 2F4(2), G2(q) < 3D4(q) and F4(q) < 2E6(q),
respectively.

Thus for all of above groups we have |Cent(G)| > 100.
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Suppose L ∼= 2Dn(q) ∼= PΩ−
2n(q), where n > 3. We must consider 2D4(2), 2D4(3),

2D5(2), 2D5(3), 2D6(2), 2D6(3) or 2D7(2). Using the fact that 2Dn(q) ∼= PΩ−
2n(q)

and by The GAP Group (2013), we obtain the following table:

G υp(G)

PΩ−
8 (2) υ5 = 28 . 32 . 7 . 17

PΩ−
8 (3) υ5 = 22 . 310 . 7 . 13 . 41

PΩ−
10(2) υ7 = 217 . 34 . 5 . 11 . 17

PΩ−
10(3) υ7 = 28 . 317 . 52 . 13 . 41 . 61

PΩ−
12(2) υ7 = 223 . 3 . 52 . 11 . 13 . 17 . 31

PΩ−
12(3) υ7 = 28 . 323 . 52 . 112 . 41 . 61 . 73

PΩ−
14(2) υ11 = 239 . 36 . 52 . 72 . 13 . 17 . 31 . 43

So in each case we obtain a contradiction.
If L ∼= 2G2(q), where q = 32m+1, then we must consider 2G2(3) or 2G2(27). By
The GAP Group (2013), we obtain that |Cent(2G2(3))| = 548 and υ7(2G2(27)) =
38 . 13 . 19 . 37 and in each case we obtain a contradiction. Finally suppose
that L ∼= 2An(q) ∼= Un+1(q) ∼= PSUn+1(q), then by checking the order of
L, it follows that we must consider the following cases: n = 2 and pm =
2, 4, 8, 3, 9, 27, 5, 7, 11, 17, 19, 23, 31, 37, or
n = 3 and pm = 2, 4, 8, 3, 9, 27, 5, 7, 11, 17, 23, 31 or
n = 4 and pm = 2, 4, 3, or
n = 5 and pm = 2, 4, 3, or
n = 6 and pm = 2, or
n = 7 and pm = 2, or
n = 8 and pm = 2, or
n = 9 and pm = 2.

But using the fact that A7 ≤ PSU3(q) in King (2005) and |Cent(A7)| = 807,
only the following cases remain:

G υp(G) G υp(G)
PSU4(2) υ5 = 24 . 34 PSU5(3) υ5 = 25 . 310 . 7 . 61
PSU4(4) υ13 = 212 . 3 . 52 . 17 PSU6(2) υ5 = 212 . 35 . 7 . 11
PSU4(8) υ5 = 216 . 37 . 7 . 19 PSU6(4) υ7 = 229 . 3 . 56 . 13 . 17 . 41
PSU4(3) υ5 = 25 . 36 . 7 PSU6(3) υ5 = 25 . 314 . 72 . 13 . 61
PSU4(5) υ7 = 27 . 3 . 56 . 13 PSU7(2) υ5 = 216 . 34 . 7 . 11 . 43
PSU4(7) υ43 = 29 . 3 . 52 . 76 PSU8(2) υ7 = 226 . 35 . 52 . 11 . 17 . 43
PSU5(2) υ5 = 28 . 34 . 11 PSU9(2) υ7 = 232 . 36 . 52 . 11 . 17 . 19 . 43
PSU5(4) υ13 = 218 . 53 . 17 . 41 PSU10(2) υ7 = 238 . 36 . 5 . 112 . 17 . 19 . 31 . 43

So in each case we obtain a contradiction.
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Lemma 3.3. If G is a sporadic simple group, then |Cent(G)| > 100.

Proof. Let S be one of the sporadic groups, M11,M12,M22 or J1. By Conway
et al. (1985), PSL2(11) < S. Since |Cent(PSL2(11)| = 189, by Lemma 2.3,
we have |Cent(S)| > 100.

By Conway et al. (1985),

PSU3(3) < J2(p. 42), M11 < HS(p. 80),

PSL2(19) < J3(p. 82), M11 < McL(p. 100),

PSL2(25) < Suz(p. 131), M12 < Fi22(p. 163),

A12 < HN(p. 166)

Thus for all of sporadic groups S = J2, HS, J3,McL, Suz, F i22 and HN we
have |Cent(S)| > 100.
Also by Conway et al. (1985), we have:

M22 < M23(p. 71), PSL2(23) < M24(p. 96),

HS < Co3(p. 134), McL < Co2(p. 154),

Co2 < Co1(p. 183), PSL2(29) < Ru(p. 126),

J1 < O,N(p. 132), G2(5) < Ly(p. 174),

S12 < Fi23(p. 177), F i23 < Fi
′

24(p. 207),

PSL2(23) : 2 < J4(p. 190), PSL2(19) : 2 < Th(p. 177),

Th < B(p. 217), S3 × Th < M(p. 234),

Thus for all sporadic groups S = M23,M24, Co1, Co2, Co3, , F i23, F i
′

24, Ru,
O,N,Th,B, J4, Ly and M, we have |Cent(S)| > 100.

Finally, by Conway et al. (1985), the Held group He has a subgroup iso-
morphic to PSp4(4). So by The GAP Group (2013), we have υ17(PSp4(4)) =
26 . 32 . 52.

Therefore |Cent(S)| > 100, for all sporadic simple groups S. The proof is
complete.

The proof of Theorem 1.1:
By Lemmas 3.1, 3.2 and 3.3, we obtain that if G is a finite non-abelian simple
group with |Cent(G)| ≤ 100, then it is isomorphic to one of the following groups
PSL2(5), PSL2(7) or PSL2(8).
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4. Conclusion

In this paper, we studied all finite non-abelian simple groups G with
|Cent(G)| ≤ 100. We used the fact that every finite non-abelian simple group is
isomorphic to one of the following four types of groups: (i) an alternating group
An for n ≥ 5, (ii) a classical group, (iii) an exceptional group of Lie type or
(iv) one of 26 sporadic simple groups. By counting the number of centralizers
of groups in each type, we deduced that a finite non-abelian simple group
with |Cent(G)| ≤ 100 is isomorphic to one of the groups PSL2(5), PSL2(7) or
PSL2(8).
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